ai绘画结合chatgpt生成动画 一文回顾AI绘画的成长之路:从简笔画到真实人脸生成

AI资讯9个月前发布 fengdao
24 0

出品 | AI科技大本营(id:)

【导语】近几年,AI绘画成为大家关注的热点话题,从最初的简笔画,到动漫风格的绘画,再到真实人脸的生成…… AI 画家的飞速成长,似乎标志着一个绘画界新星的冉冉升起。AI 到底是如何学会绘画的?在本文中,营长梳理了 AI 绘画的成长史,带大家一同走近这位新晋画家。

作为计算机视觉的热点探讨问题之一,AI绘画技术在近几年得到了飞速发展,相关模型和应用不断引起人们的热烈讨论。如此前营长为大家报道的:吸猫人群的福音:猫脸生成器,卖出 43.2 万美元的AI画作,变身神笔马良神器,使用重构网络拯救“老婆”画作,AI学会图像风格迁移大法、英伟达新型GAN,可使豹子秒变沙皮狗等等。

几年前,AI 还只会像小孩子一样画出一些简单的简笔画,而如今,AI 已经能够画出逼真的人脸,甚至让人类都难以分辨真假。那么,这位绘画界的新星到底是如何飞速成长起来的?AI 都学会了哪些绘画方法?今天,营长就带大家一同走近这个神秘的画家,探秘 AI 绘画的成长之路。

AI 绘画的出现

上关于“AI ”一词的检索热度变化(2004-2019)

AI 绘画实际上并不是近几年才出现的新词语。从 趋势提供的搜索指数来看,2004 年至 2007 年期间,“AI ”就已经成为检索热词;2008年之后,检索热度开始下降并进入平缓期;直到 2017 年 5 月, AI 绘画再一次成为大众的关注热点。

从广义上来讲,AI 绘画早在上个世纪就已经出现了。1973年, Cohen 就已经开始尝试和电脑程序 “AARON” 携手进行绘画创作。与当下 AI 绘画不同之处在于,ARRON 使用机械手臂在画布上进行绘画,而非数字绘图。进入 20 世纪 80 年代,ARRON 学会了对三维空间物体的绘画表现方法;90 年代,它学会了使用多种颜色进行绘画。ARRON 已经绘制出了很多不同的作品,直到今天,它仍在进行创作。

图:ARRON 在 1992 年创作的一副绘画作品

参考链接:

从 语言逐渐流行开始,一个名为 “” 的绘图库逐渐进入人们的视线。 绘图库的概念最初来自 Wally 和 于 1966 年所创造的 Logo 编程语言,通过编写程序,这个库也能够帮助我们进行一些图像的绘画。

我们现在所说的 AI 绘画,实际更多指代的是基于机器学习模型进行自动数字绘图的计算机程序。这类绘画方式的发展要稍晚一些。2012 年,吴恩达和 Jeff Dean 使用 Brain 的 1.6 万个 CPU 训练了一个大型神经网络,用于生成猫脸图片。在当时的训练中,他们使用了 1000 万个来自 视频中的猫脸图片,模型训练用了整整三天。最终得到的模型,也只能生成一个非常模糊的猫脸。

与现在的模型相比,这个模型的训练几乎毫无效率可言。但对于计算机视觉领域而言,这次尝试开启了一个新的研究方向,也就是我们目前所讨论的 AI 绘画。

AI 学习绘画的挑战

对于机器学习模型而言,让 AI 学会绘画的过程就是一个模型的构建和参数训练过程。在模型训练中,每一副图画都使用一个大小为 mxn 的像素点矩阵表示,对于彩色图画,每个像素点都由 RGB(red、green、blue)三个颜色通道组成。要让计算机学会绘画,就相当于训练一个可以逐个产生像素的机器学习模型。

这听起来或许很简单,但实际上,这一过程并没有我们想象得那么容易。在一篇论文《 to Paint with Model-based Deep 》中,提到了训练 AI 学习绘画的三个挑战,包括:

另外,如果希望 AI 除了模仿已有画作的内容和风格以外,还能够自创风格,模型训练的难度会进一步加大。一个原因在于,“创造”是一个非常抽象的概念,使用模型来表达比较困难;另外,训练数据的内容和风格终究是有限的。在上文提到的 ARRON 经过40余年的学习,仍没能够跳脱出其最初使用的色彩艳丽的抽象派风格,而这正是 Cohen 本人的绘画风格。

《 to Paint with Model-based Deep 》

论文地址:

AI 绘画的初步发展:学习图片生成方式,尝试简笔画

在吴恩达的猫脸生成模型之后,学界对 AI 绘画进行了很多探索。最初的图像生成模型为Ian J. 在 2014 年提出的对抗生成网络( , GAN),这一模型也成为了很多 AI 绘图模型的基础。 GAN 包括两个部分:生成器()和判别器(),其中生成器用于图片的生成,判别器来判断图片为真或假。这种方法对图像生成领域做出了极大贡献。

动画生成技术5种_动画绘制过程_ai绘画结合chatgpt生成动画

《 Nets》

论文地址:~/16-785//–gans.pdf

但是使用 GAN 生成的图片存在两个比较明显的问题。一是缺少控制能力。如果向 GAN 中输入一个随机噪声,就会产生一副随机图像,而对于 AI 绘画而言,图像的产生过程应当是可控的。二是分辨率和质量较低。使用基础的 GAN 网络生成的很多图像的分辨率较低。

针对于低分辨率的问题,2016 年 9 月, Ledig 等人提出了 SRGAN 模型,该模型首次使用 GAN 网络的架构生成了高分辨率的真实图片。通过将 GAN 的损失函数替换为感知损失和对抗损失,模型取得了较好的生成效果。

《Photo- Image Super- Using a 》

论文地址:

2016 年 12 月,Ian 在 NIPS 上介绍了一个使用 GAN 能够产生动物图片的模型。这些图片的风格看起来比较逼真,但是由于图片结构生成的不连续问题,有时会产生一些不合常理的内容,如:长了三只眼睛的猫,或者有好几个头的狗。

NIPS 2016

论文地址:

图:Ian 使用 GAN 模型生成的图片,看起来有点惊悚

上述研究在学界引起了广泛讨论,但大众真正开始了解 AI 绘画,要推迟到 2017 年 4 月 提出 -RNN 模型的时候。-RNN 基于 模型构建,并使用了变分推理方法,模型的训练使用了一个包含几百个种类的上千张手绘简笔画图片。通过训练,模型能够绘制一些简笔画。 在论文《A of 》中对这一模型进行了详细介绍,并在之后开源了相关代码。

-RNN 模型得到了人们的广泛关注,一些开发者还基于该模型开发了一些有趣的应用。其中一个在线应用叫做 “Draw with a ” ,人们可以用鼠标随意画一个图形,并选择一个希望生成的图形类别,该网站便能以多种方式自动帮你补充完整个图形。例如,选择绘画类别为 “”,效果如下面的动图所示:

图: “Draw with a ” 的一个使用示例

《A of 》

论文地址:

“Draw with a ”

项目地址:

此后,研究人员对简笔画的绘制也在不断探究。2018 年的 BMVC (The ,英国计算机视觉会议)上,Tao Zhou 等人提交了一篇名为《 to with Deep Q- and 》的论文,该论文基于强化学习( , RL)中的 Q- 方法构建了一个机器学习模型,模型对于涂鸦类和水彩类绘画都能产生较好的输出。

《 to with Deep Q- and 》

论文地址:

AI 绘画的进一步发展:学习更加复杂的绘画方法

动画生成技术5种_动画绘制过程_ai绘画结合chatgpt生成动画

在 -RNN 模型之后,大量的 AI 绘画模型不断涌现。

2017 年 7 月, 在《CAN: , “Art” by About and from Style Norms》中提出了创造性对抗网络( , CAN)模型,尝试使 AI 绘制风格和图片类型更加多样的图画。

与传统的 GAN 结构一样, CAN 也包含生成器和鉴别器两个部分。不同之处在于, CAN 在 GAN 的损失函数的基础上加入了绘画的时间信息,因此在进行学习后,可以让模型产生与某一时间阶段风格不同的画作。在人工评测中,人们认为 CAN 模型的绘画和人类艺术家绘画的创意性不相上下。尽管创意性是一个比较主观的评价指标,这仍是 AI 学习绘画的重要一步。

图:基于 CAN 模型生成的绘画

《CAN: , “Art” by About and from Style Norms》

论文地址:

2018 年 4 月, 提出了一个名为 “” 的智能体,该智能体使用的模型基于强化对抗学习( , RAL)方法构建,并能够与计算机绘图程序协作进行绘画。该模型的基本架构类似于强化学习,但这一模型使用了一个判别器来决定基于模型输出的奖励,当判别器越难判断输出图片的绘制者是人还是计算机,基于模型的奖励越高。不同于以往的图片生成模型,论文中的模型可以使用未标注的图片集进行训练,极大降低了获取数据的成本,并提升了模型对图片细节的学习效果。

《 for using 》

论文地址:

2019 年 3 月,旷视科技训练了一个名为“” 的绘画 AI ,其使用的基准算法为深度确定策略梯度算法(DDPG)。该算法基于策略梯度算法和值函数构建,并使用了演员-评论家(actor-)框架。为加快模型训练速度,他们将这一方法接入到了强化学习模型中,用以辅助模型训练。相较于之前的模型,该方法能够适用于更加广泛的数据集,只需修改模型绘画时的最大笔画数即可。

《 to Paint with Model-based Deep 》

论文地址:

尽管 AI 绘画已经得到了很多成长,在未来的研究中,如何使模型更具创造性、如何提高图片质量效果、如何发掘更多有趣有价值的应用,还是留待讨论的问题。

总结

在上文中,我们简要回顾了 AI 绘画的发展史,简单总结如下:

最近几年, AI 绘画的成长速度是惊人的。未来,这位新晋画家还会为我们带来怎样的惊喜?让我们拭目以待。

(*本文为 AI科技大本营原创文章,转载请联系原作者)

CTA核心技术及应用峰会

5月25-27日,由中国IT社区CSDN与数字经济人才发展中心联合主办的第一届CTA核心技术及应用峰会将在杭州国际博览中心隆重召开,峰会将围绕人工智能领域,邀请技术领航者,与开发者共同探讨机器学习和知识图谱的前沿研究及应用。

更多重磅嘉宾请识别海报二维码查看,点击阅读原文即刻抢购。添加小助手微信,备注“CTA”,了解票务以及会务详情。

© 版权声明

相关文章

暂无评论

暂无评论...